Generalized Maximum Margin Clustering and Unsupervised Kernel Learning

نویسندگان

  • Hamed Valizadegan
  • Rong Jin
چکیده

Maximum margin clustering was proposed lately and has shown promising performance in recent studies [1, 2]. It extends the theory of support vector machine to unsupervised learning. Despite its good performance, there are three major problems with maximum margin clustering that question its efficiency for real-world applications. First, it is computationally expensive and difficult to scale to large-scale datasets because the number of parameters in maximum margin clustering is quadratic in the number of examples. Second, it requires data preprocessing to ensure that any clustering boundary will pass through the origins, which makes it unsuitable for clustering unbalanced dataset. Third, it is sensitive to the choice of kernel functions, and requires external procedure to determine the appropriate values for the parameters of kernel functions. In this paper, we propose “generalized maximum margin clustering” framework that addresses the above three problems simultaneously. The new framework generalizes the maximum margin clustering algorithm by allowing any clustering boundaries including those not passing through the origins. It significantly improves the computational efficiency by reducing the number of parameters. Furthermore, the new framework is able to automatically determine the appropriate kernel matrix without any labeled data. Finally, we show a formal connection between maximum margin clustering and spectral clustering. We demonstrate the efficiency of the generalized maximum margin clustering algorithm using both synthetic datasets and real datasets from the UCI repository.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximum Margin Clustering Using Extreme Learning Machine

Maximum margin clustering (MMC) is a newly proposed clustering method, which extends large margin computation of support vector machine (SVM) to unsupervised learning. But in nonlinear cases, time complexity is still high. Since extreme learning machine (ELM) has achieved similar generalization performance at much faster learning speed than traditional SVM and LS-SVM, we propose an extreme maxi...

متن کامل

Ratio-Based Multiple Kernel Clustering

Maximum margin clustering (MMC) approaches extend the large margin principle of SVM to unsupervised learning with considerable success. In this work, we utilize the ratio between the margin and the intra-cluster variance, to explicitly consider both the separation and the compactness of the clusters in the objective. Moreover, we employ multiple kernel learning (MKL) to jointly learn the kernel...

متن کامل

Minimum Conditional Entropy Clustering: A Discriminative Framework for Clustering

In this paper, we introduce an assumption which makes it possible to extend the learning ability of discriminative model to unsupervised setting. We propose an informationtheoretic framework as an implementation of the low-density separation assumption. The proposed framework provides a unified perspective of Maximum Margin Clustering (MMC), Discriminative k -means, Spectral Clustering and Unsu...

متن کامل

Multiple Kernel Clustering

Maximum margin clustering (MMC) has recently attracted considerable interests in both the data mining and machine learning communities. It first projects data samples to a kernel-induced feature space and then performs clustering by finding the maximum margin hyperplane over all possible cluster labelings. As in other kernel methods, choosing a suitable kernel function is imperative to the succ...

متن کامل

High-Dimensional Unsupervised Active Learning Method

In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006